



## What we previously learned





# **Expectation from sPHENIX pre-CDR simulations: Sampling fraction**





## **Expectation from sPHENIX pre-CDR** simulations: Resolution



1D SPACAL, No SVX, Pedestal noise (2ADC), photon fluctuation (500e/GeV) 2D SPACAL, No SVX, Pedestal noise (2ADC), photon fluctuation (500e/GeV)



# Prototype3 EMCal -> sPHENIX simulation



#### Introduced by three pull request:

- https://github.com/sPHENIX-Collaboration/macros/pull/44
- https://github.com/sPHENIX-Collaboration/coresoftware/pull/231
- https://github.com/sPHENIX-Collaboration/calibrations/pull/17

Single macro to run (after nightly build):

 https://github.com/sPHENIX-Collaboration/macros/blob/master/macros/ /prototype3/Fun4All G4 Prototype3.C



#### From drawing to simulation

One major head up, Prototype3 has 15% less fiber than pre-CDR simulation:

- Prototype3 fiber for 2x2 block = 52\*47 = 2444 (criteria: 1mm spacing at narrow end)
- Pre-CDR fiber for 2x2 block = 60\*48 = 2880 (criteria: match sampling fraction with 1-D)



Drawing – Fiber layout



Geant4 simulation



### From drawing to simulation





Drawing - Block size

**Geant4** simulation



#### From drawing to simulation





Drawing – Module in enclusure

Geant4 simulation



#### Put it all together

#### - "typical" Simulation 32 GeV pion





Simulation Top View

Simulation Side View



#### Put it all together

#### - What most event looks like









#### Put it all together

#### - "typical" Simulation 32 GeV electron





Simulation Top View

Simulation EMCal View



#### Performance checks



- https://github.com/sPHENIX-Collaboration/macros/pull/44
- https://github.com/sPHENIX-Collaboration/coresoftware/pull/231
- https://github.com/sPHENIX-Collaboration/calibrations/pull/17



#### Configuration1 simulated

- Flat light collection efficiency
- Shoot to edge between two towers
- Tilt EMCal 0 degrees vertically





#### Standardized quality checks

Data point: Prototype3, 32 GeV electron, 0-degree tilt (Configuration1)

Shade: Prototype2, 32 GeV electron, 0-degree tilt





Longer flight path R/Sin(theta)

→ later hit time by a few ns

Some leakage due to choice of indenting angle (Particle goes through exact gap between blocks)

**Signification lower sampling fraction!!** Prototype 3 has 15% less fiber than pre-CDR

#### **Configuration2 simulated**

- Flat light collection efficiency
- Shoot to center of one tower
- ► Tilt EMCal 10 degrees vertically ← add in a tilt avoid perfect-geometry channeling







#### Configuration2 simulation result

- Prototype3 are expected to have higher intrinsic stat. and constant terms:
- ▶ 15% less fiber leads to increase of stat. term from 11.8% -> 12.8%
- Some composition of less fiber and expected sampling fraction variation leads to constant term from 2.4% -> 3.7%



## **Extra information**





#### **Sampling Fraction**







#### Lateral extension of shower





#### Linearality – double checking





#### **Energy resolution VS test beam**

Geant4 sim QGSP BERT HP + light yield model (Geant4 default Birk) Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer

sPHENIX simulation, 1D projective EMCal only, full B EIC RD1 study FermiLab beam tests, 1D projective EMCal 1GeV electron is B-bended by 0.45 rad → higher SF. and performance **→**0.18 Electrons Data,  $\eta = 0.3-0.4$ Electrons,  $\eta = 0.3-0.4$ olntion, 0.14 energy resolution, 80.0 0110 80.0 01101, Electrons Data - 2.7% Beam ∆E  $\Delta E/E = 1.5\% + 8.4\%/\sqrt{E}$  $\Delta E/E = 2.8\% \oplus 12.2\%/\sqrt{E}$  $\Delta E/E = 1.2\% + 11.1\%/\sqrt{E}$ <u>0</u>0.12  $\Delta E/E = 2.7\% \oplus 12.1\%/\sqrt{E}$ Photons,  $\eta = 0.3-0.4$  $\Delta E/E = 2.9\% \oplus 12.0\%/\sqrt{E}, E \ge 2 \text{ GeV}$ energy 80.0 80.0  $\Delta E/E = 1.7\% + 10.1\%/VE$  $\Delta E/E = 1.5\% + 10.4\%/\sqrt{E}, E \ge 2 \text{ GeV}$ Consistent perf. for EM shower 90.06 80.04 90.06 40.04 0.02 0.02 10 15 20 30 12 Incoming Energy (GeV)



Beam Energy (GeV)

#### **Energy resolution inspections**

#### Simulated on SPACAL without VTX and in full magnetic field

- 1GeV electron is bended by 0.45 rad → performance ~ photon w/ eta of 0.45 and view higher SF.
- For EIC, Resolution ~< 12%/VE for electrons after magnetic field bending</li>
- For sPHENIX, Resolution ~< 14%/VE for direct photons</li>









1D SPACAL, No SVX, Sum all tower No photo-electron fluctuation/pedestal noise 1D SPACAL, No SVX,
Pedestal noise (2ADC), photon fluctuation (500e/GeV)

2D SPACAL, No SVX,
Pedestal noise (2ADC), photon fluctuation (500e/GeV)

#### **Energy resolution for full detector**

Full detector Geant4 sim QGSP\_BERT\_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe), Graph clusterizer



#### **Dynamic range plot**

50 GeV photon shower in 2D-projective SPACAL, all eta ranges Plot photon observed per tower per event, max  $^{\sim}$  22k photon/tower, pedestal  $\sigma^{\sim}$ 8 photon, range  $^{\sim}$  12bit (max/pedestal 1  $\sigma$ )





### Trigger efficiency – 2D SPACAL



## Upsilon events required |eta\_e|<1, reconstructed |mass – 9.6GeV| < 2 sigma Result: ~10e4 rejection at ~98% efficiency

- Tail of Upsilon mass peak excluded for avoiding radiated photon, which are triggered with noticeably lower eff.
- Assumed trigger sum all combination of 4x4 towers, rather than sum of  $2x2 \rightarrow 4x4$
- Realistic trigger would use reduced ADC bits, e.g. 8-bit. Performance did not significantly changed.
- 2D SPACAL showed. 1D SPACAL required larger cluster at the forward region

Geant4 sim QGSP\_BERT\_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer



## Occupancy in Hijing

Volumetric energy density shown







#### Occupancy in Hijing

#### 2D energy density shown





1D Spacal

2D Spacal



#### Occupancy – 0-10% Hijing

Geant4 sim QGSP\_BERT\_HP + light yield model (Geant4 default Birk)
Pedestal noise (8pe), photon fluctuation (500pe/GeV), Zero sup (16pe/32MeV), Graph Clusterizer

▶ Note the zero-suppression at 32 MeV.

#### Scientific review (no digitalization, 1D proj.)















